Preferential and k-Zone Parking Functions

Parneet Gill, Christopher Soto, Pamela Vargas

Faculty Mentors: Rebecca E. Garcia, Pamela E. Harris, Dwight A. Williams II Graduate Mentors: Carlos Martinez, Casandra Monroe

August 21, 2021

Overview

- Introduction
- Relationships between Parking Functions
- Computational Results
- Other Results
- Summary

Parking Functions

- Imagine n cars enter a one-way street consisting of n parking spots and a list of parking preferences p.
- Each car entering has a preferred spot.
- If that spot is empty, then the car parks.
- If the spot is taken, then there are 5 variances of parking rules that the car can follow.

Motivating Questions

- What are the relationships between different parking functions?
- Are there any connections to other combinatorial objects?

- Classical Parking Functions: Checks only forward for available spots.
- k-Naples Parking Functions: Checks k spots backwards one at a time.
- k-Zone Parking Functions: Checks back immediately k spots for availability.
- **Preferential Parking Functions:** Checks n-i spots back for an available spot.
- **Inverse Preferential Parking Functions:** Checks i-1 spots back for an available spot.

- Classical Parking Functions: Checks only forward for available spots.
- k-Naples Parking Functions: Checks k spots backwards one at a time.
- k-Zone Parking Functions: Checks back immediately k spots for availability.
- **Preferential Parking Functions:** Checks n i spots back for an available spot.
- **Inverse Preferential Parking Functions:** Checks i-1 spots back for an available spot.

Classical Parking Functions

Definition

- Each car has a preferred spot which it goes to when entering the street.
- If parking spot is empty, car parks.
- Otherwise it continues down the street until it finds an empty spot to park in.

Consider the following parking preference vector p = (2, 3, 1, 4):

ı	i	p_{i}	Configuration
	1	2	<u></u>
l	2	3	$\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$
l	3	1	c_3 c_1 c_2
l	4	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Classical Parking Functions: Checks only forward for available spots.
- k-Naples Parking Functions: Checks k spots backwards one at a time.
- k-Zone Parking Functions: Checks back immediately k spots for availability.
- **Preferential Parking Functions:** Checks n i spots back for an available spot.
- **Inverse Preferential Parking Functions:** Checks i-1 spots back for an available spot.

k-Naples Parking Functions

Definition

- Each car prefers a spot (p_i) , in which it attempts to park in.
- If spot empty, car parks.
- If occupied, car backs up checking *k* spots behind it's preferred spot one at a time and parks in first available.
- If there are no empty spots between $p_i k$ and p_i , then car continues down the street and parks in first available.

Consider the following parking preference vector p = (4, 4, 3, 2, 4):

i	p_i	k	Configuration
1	4	2	<u>c_1</u>
2	4	2	
3	3	2	<u>c₃ c₂ c₁</u>
4	2	2	c_4 c_3 c_2 c_1
5	4	2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

- Classical Parking Functions: Checks only forward for available spots.
- k-Naples Parking Functions: Checks k spots backwards one at a time.
- k-Zone Parking Functions: Checks back immediately k spots for availability.
- **Preferential Parking Functions:** Checks n i spots back for an available spot.
- **Inverse Preferential Parking Functions:** Checks i-1 spots back for an available. spot.

k-Zone Parking Functions

Definition

- Each car prefers a spot (p_i) , in which it attempts to park in.
- If spot is empty, car parks.
- If occupied, car backs up immediately k spots behind it's preferred spot and then moves down the street if spot $p_i k$ is taken.
- Parks in first available spot.

Consider the following parking preference vector p = (4, 4, 3, 2, 4):

i	p_i	k	Configuration
1	4	2	
2	4	2	$\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$
3	3	2	<u>c₂ c₃ c₁</u>
4	2	2	c_4 c_2 c_3 c_1
5	4	2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

k-Zone vs. k-Naples

Conjecture

k-Naples is a subset of k-Zone.

For k = 2:

n	k-Naples	<i>k</i> -Zone	
1	1	1	
2	4	4	
3	27	27	
4	240	244	
5	2,731	2,808	
6	38,034	39,416	
7	627,405	654,302	

Non-Increasing Preference Vectors

Consider the following table of the total number of parking functions formulated from non-increasing preference vector of length n.

For k = 2:

n	<i>k</i> -Naples	<i>k</i> -Zone
1	1	1
2	3	3
3	10	10
4	34	34
5	117	117
6	407	407
7	1,430	1,430

Findings From the Table

Theorem

Let $p = (p_1, ..., p_n) \in [n]^n$ be a non-increasing preference vector. Then p is a k-Naples if and only if p is a k-Zone.

Proof

We prove this by induction on the total number of cars, from last to first, that switch their parking rule from k-Naples to k-Zone and vice versa.

Enumerating k-Zone

Consider the table enumerating the number of k-Zone parking functions of length n and fixed parameter k.

n	k = 0	k = 1	k = 2	k = 3	k = 4	<i>k</i> = 5	k = 6	k = 7
1	1							
2	3	4						
3	16	24	27					
4	125	203	244	256				
5	1,296	2,225	2,808	3,065	3,125			
6	16,807	30,067	39,416	44,424	46,296	46,656		
7	262,144	484,071	654,302	757,919	805,543	821,023	823,543	
8	4,782,969	9,057,316	12,553,351	14,880,368	16,110,376	16,613,896	16,757,056	16,777,216

Findings From the Table (Continued)

Conjecture

If $n \ge 2$ and $0 \le k \le n-1$, then $|\mathrm{ZPF}(n,k-1)| - |\mathrm{ZPF}(n,k-2)|$ is equal to:

- The order of the alternating group A_{n+1}
- Number of Hamiltonian cycles on the complete graph, K_n
- Number of necklaces with n distinct beads for n! bead permutations.

Formula:

$$\frac{n!}{2} \tag{1}$$

 $1, 3, 12, 60, 360, 2520, 20160, 181440, \dots$

coinciding with the OEIS sequence A001710.

- Classical Parking Functions: Checks only forward for available spots.
- k-Naples Parking Functions: Checks k spots backwards one at a time.
- k-Zone Parking Functions: Checks back immediately k spots for availability.
- **Preferential Parking Functions:** Checks n i spots back for an available spot.
- **Inverse Preferential Parking Functions:** Checks i-1 spots back for an available spot.

Preferential Parking Functions

Definition

- Each car prefers a spot (p_i) , in which it attempts to park in.
- If spot is empty, car parks.
- Otherwise car checks n i spots behind p_i , one by one.
- If all the n-i spots preceding p_i are taken, car continues down the street until it finds an available spot to park in.

Consider the following parking preference vector p = (6, 6, 4, 3, 3, 3):

i	p_i	n-i	Configuration		
1	6	5	<u>c_1</u>		
2	6	4	$\underline{\hspace{1cm}}$		
3	4	3	$\underline{}$		
4	3	2	$\underline{\hspace{1cm}}$		
5	3	1	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
6	3	0	$\underline{\hspace{1cm}}$		

- Classical Parking Functions: Checks only forward for available spots.
- k-Naples Parking Functions: Checks k spots backwards one at a time.
- k-Zone Parking Functions: Checks back immediately k spots for availability.
- **Preferential Parking Functions:** Checks n i spots back for an available spot.
- Inverse Preferential Parking Functions: Checks i-1 spots back for an available spot.

Inverse Preferential Parking Functions

Definition

- Each car prefers a spot (p_i) , in which it attempts to park in.
- If spot is empty, car parks.
- If occupied, car checks i 1 spots behind p_i , one by one.
- If all i-1 spots behind p_i are taken, car continues down the street until it finds an available spot to park in.

Consider the following parking preference vector p = (6, 6, 4, 3, 3, 3):

i	p_i	i-1	Configuration		
1	6	0	<u>c_1</u>		
2	6	1	<u>c2</u> <u>c1</u>		
3	4	2	<u> c₃ c₂ c₁</u>		
4	3	3	<u>c₄ c₃ c₂ c₁</u>		
5	3	4	<u>c₅ c₄ c₃ c₂ c₁ </u>		
6	3	5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Preferential Parking Function Findings

Lemma

If $n \geq 2$, then $(n, \ldots, n) \in [n]^n$ is not a preferential parking function.

Proof

By contradiction assuming that all cars can park.

Other Results

Lemma

All preference vectors are inverse preferential parking functions.

Proof

Direct proof.

Acknowledgments

Funding provided by:

Thank you to the Young Mathematicians Conference organizers for the opportunity to present our research at the YMC!

Thank you to the audience for their curiosity!