Preferential and k-Zone Parking Functions

Parneet Gill, Christopher Soto, Pamela Vargas

Faculty Mentors: Rebecca E. Garcia, Pamela E. Harris, Dwight A. Williams II Graduate Mentors: Carlos Martinez, Casandra Monroe

October 2, 2021

Overview

- Introduction
- Relationships between Parking Functions
- Computational Results
- Other Results
- Summary

Parking Functions

- Imagine ^ cars enter a one-way street consisting of ^ parking spots and a list of parking preferences e.
- Each car entering has a preferred spot.
- If that spot is empty, then the car parks.
- If the spot is taken, then there are 5 variances of parking rules that the car can follow.

Motivating Questions

- What are the relationships between different parking functions?
- Are there any connections to other combinatorial objects?

; Y-ssSc-Yd-q\MS^L G~^<z\D^S= Checks only forward for available spots.

VQ -eYCs d-qY8^L G~^<z\$b^s= Checks Wspots backwards one at a time.

 $VVSb^C d - qVSL G^< zSb^S = Checks back immediately <math>VVSpots$ for availability.

 $dqHCqC^zSYd-qWSLG^{<}zS^s=Checks$ Sspots back for an available spot.

R'fCopC d cC+CoC^zS Y d - c\ngraphs'L G~^<z\$b^S= Checks S 1 spots back for an available spot.

; Y ssS-Yd-qV8^L G-^<zSo^s= Checks only forward for available spots.

VQ -eYCs d-qY8^L G~^<z\$b^s= Checks Wspots backwards one at a time.

 $VVSb^C d - qVSL G^< zSb^S = Checks back immediately <math>VVSpots$ for availability.

 $dqHCqC^zSYd-qWSLG^{<}zS^s=Checks$ Sspots back for an available spot.

R'fCopC d cC+CoC^zS Y d - c\ngraphs'L G~^<z\$b^S= Checks S 1 spots back for an available spot.

Classical Parking Functions

? C' ^**S**\$\

- Each car has a preferred spot which it goes to when entering the street.
- If parking spot is empty, car parks.
- Otherwise it continues down the street until it finds an empty spot to park in.

Consider the following parking preference vector e = (2;3;1;4):

i	p_{i}	Configuration			
1	2	<u></u>			
2	3	$\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$			
3	1	c_3 c_1 c_2			
4	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	l				

; Y-ssS-Yd-q\9\%\L G-\<z\\$b^\$= Checks only forward for available spots.

WQ - eYCs d-qV8^L G~^<z\$o^s= Checks Wspots backwards one at a time.

 $VVSb^C d - qVSL G^< zSb^S = Checks back immediately <math>VVSpots$ for availability.

 $dqCHCqC^zSYd-qWS^LG^{-^<}ZS^{-^<}S=Checks^{-^<}S$ spots back for an available spot.

R'fCopC d cC+CoC^zS Y d - c\ngraphs'L G~^<z\$b^S= Checks S 1 spots back for an available spot.

k-Naples Parking Functions

? C' ^\$\\$\^

- Each car prefers a spot (e_S) , in which it attempts to park in.
- If spot empty, car parks.
- If occupied, car backs up checking *W*spots behind it's preferred spot <u>one at a time</u> and parks in first available.
- If there are no empty spots between e_S Wand e_S then car continues down the street and parks in first available.

Consider the following parking preference vector e = (4/4/3/2/4):

i	p_i	k	Configuration		
1	4	2			
2	4	2			
3	3	2	<u>c₃ c₂ c₁</u>		
4	2	2	c_4 c_3 c_2 c_1		
5	4	2	c_4 c_3 c_2 c_1 c_5		

; Y-ssSc-Yd-q\MS^L G~^<z\D^S= Checks only forward for available spots.

VQ -eYCs d-qY8^L G~^<z\$b^s= Checks Wspots backwards one at a time.

WS b^C d - dWSL G~^<zSo^s= Checks back immediately Wspots for availability.

 $dq\Omega + CqC^zSYd-qWSLG^- < S_0^s= Checks ^ S_0 s= Checks ^ S_0$

R'fCopC d cC+CoC^zS Y d - c\ng S'L G~^<z\$b^S= Checks S 1 spots back for an available. spot.

k-Zone Parking Functions

? C' ^\$\\$\^

- Each car prefers a spot (e_S) , in which it attempts to park in.
- If spot is empty, car parks.
- If occupied, car backs up immediately Wspots behind it's preferred spot and then moves down the street if spot e_S Ws taken.
- Parks in first available spot.

Consider the following parking preference vector e = (4;4;3;2;4):

i	p_i	k	Configuration		
1	4	2			
2	4	2	$\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$		
3	3	2	<u>c₂ _c₃ _c₁</u>		
4	2	2	c_4 c_2 c_3 c_1		
5	4	2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
3 4	2	2 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

k-Zone vs. k-Naples

; b^****€z~qC

WQ - eYCs Ss - s~4sCz bHWZŠb^C

For W= 2:

Λ	<i>W</i> ∙Naples	₩Zone	
1	1	1	
2	4	4	
3	27	27	
4	240	244	
5	2,731	2,808	
6	38,034	39,416	
7	627,405	654,302	

Non-Increasing Preference Vectors

Consider the following table of the total number of parking functions formulated from non-increasing preference vector of length ^.

For W= 2:

Λ	₩Naples	₩Zone	
1	1	1	
2	3	3	
3	10	10	
4	34	34	
5	117	117	
6	407	407	
7	1,430	1,430	

Findings From the Table

y PCbqC\

$$XCz = (e_1; ...; e_n) 2 [^]^ 4C - ^b^G^G QC - SSL eqHQC^CC fCzbqi y PC^ e S - VQ - eVS SH-^@b^WSHe S - VQSb^O$$

d cbbH

We prove this by induction on the total number of cars, from last to first, that switch their parking rule from WNaples to WZone and vice versa.

Enumerating k-Zone

Consider the table enumerating the number of WZone parking functions of length $^{\wedge}$ and fixed parameter W

Λ	<i>W</i> = 0	<i>W</i> = 1	<i>W</i> = 2	<i>W</i> = 3	<i>W</i> = 4	<i>W</i> = 5	<i>W</i> = 6	<i>W</i> = 7
1	С							
2	3	J						
3	16	24	u					
4	125	203	244	Iv				
5	1,296	2,225	2,808	3,065	l 3¢ }			
6	16,807	30,067	39,416	44,424	46,296	Jv≯lv		
7	262,144	484,071	654,302	757,919	805,543	821,023)[k } [D	
8	4,782,969	9,057,316	12,553,351	14,880,368	16,110,376	16,613,896	16,757,056	cv zuuu> cv

15/23

Findings From the Table (Continued)

; b^**\C**<**z**~**q**C

```
RH^{A} = 2 - ^{0} W - ^{1} zPC^{A}jŠdG(^{C}; W - 1)j - jŠdG(^{C}; W - 2)j
$\text{$S } C \times Yzb=
```

- $y PC bq@Qq bHzPC VzQq^-zSL Lqb~e$, $_{^{\wedge}+1}$
-] ~\ 4CqbHO-\ \$\frac{4}{2}b^\$ ^ <%\text{3Cs} b^ zPC <b\ e\text{12C Lq eP>V_A
-] ~\ 4CqbH^C<\N\ <Cs ...\\$P^ @\\$z\$^<z 4C_@s \text{Hbq^!} 4C_@ eCq\ ~z-z\\$b^si

Formula:

$$\frac{4}{2}$$
 (1)

1;3;12;60;360;2520;20160;181440;:::

coinciding with the OEIS sequence A001710.

; Y-ssSc-Yd-q\MS^L G~^<z\D^S= Checks only forward for available spots.

VQ -eYCs d-qY8^L G~^<z\$b^s= Checks Wspots backwards one at a time.

 $VVSb^C d - qVSL G^< zSb^S = Checks back immediately <math>VVSpots$ for availability.

d cC+CcC^zS Yd - cM8^L G~^<z\$b^s= Checks ^ Sspots back for an available spot.

R'fCopC d cC+CoC^zS Y d - c\ngraphs'L G~^<z\$b^S= Checks S 1 spots back for an available spot.

Preferential Parking Functions

? C' ^**S**Sb^

- Each car prefers a spot (e_S) , in which it attempts to park in.
- If spot is empty, car parks.
- Otherwise car checks $^{\wedge}$ Sspots behind e_{S} one by one.
- If all the $^{\wedge}$ Sspots preceding e_S are taken, car continues down the street until it finds an available spot to park in.

Consider the following parking preference vector e = (6/6/4/3/3/3):

i	p_i	n-i	Configuration			
1	6	5	<u>c</u> 1			
2	6	4	$\underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} c_1$			
3	4	3	<u></u>			
4	3	2	<u>c4 c3 c2 c1</u>			
5	3	1	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
6	3	0	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			

; Y-ssSc-Yd-q\MS^L G~^<z\D^S= Checks only forward for available spots.

VQ -eYCs d-qY8^L G~^<z\$b^s= Checks Wspots backwards one at a time.

 $VVSb^C d - qVSL G^< zSb^S = Checks back immediately <math>VVSpots$ for availability.

 $dqHCqC^zSYd-qWSLG^{<}zS^s=Checks$ Sspots back for an available spot.

R\fCosC d oC+CoC\zS Yd-q\f\8\L G\-\<z\\$b\s= Checks S 1 spots back for an available spot.

Inverse Preferential Parking Functions

? C' ^\$\\$\^

- Each car prefers a spot (e_S) , in which it attempts to park in.
- If spot is empty, car parks.
- If occupied, car checks S 1 spots behind e_S one by one.
- If all S 1 spots behind e_S are taken, car continues down the street until it finds an available spot to park in.

Consider the following parking preference vector e = (6/6/4/3/3/3):

L	i	p_i	i-1	Configuration			
	1	6	0	<u>c</u> 1			
	2	6	1	$\underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} c_1$			
	3	4	2	<u></u>			
	4	3	3	<u>c4 c3 c2 c1</u>			
	5	3	4	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
	6	3	5	c_6 c_5 c_4 c_3 c_2 c_1			

Preferential Parking Function Findings

XC\ \ -

RH^ $2>zPC^{(^{*};...;^{A})} 2[^{A}]^{^{*}}$ \$\$ ^bz - eqPtQC^z\$ Ye-qN\$'L H-^<z\$b^i

d cbbH

By contradiction assuming that all cars can park.

Other Results

XC\ \ -

, Weathac^<CfCzbas-acS\fCasCeathac^zSYe-aV8\LH^<z\$b^si

d cpbH

Direct proof.

22 / 23