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Abstract

The current best known [239, 21], [240, 21], and [241, 21] binary linear codes
have minimum distance 98, 98, and 99 respectively. In our re-
search, we introduce three binary Goppa codes with Goppa polyno-
mials (x17 + 1)6, (x16 + x)6, and (x15 + 1)6. The Goppa codes are
[239, 21, 103], [240, 21, 104], and [241, 21, 104] binary linear codes respectively.
These codes have greater minimum distance than the current best known codes
(according to (2)) with the respective length and dimension. Thus, they have
better error-correction capability. In addition, with the techniques of punctur-
ing, shortening, and extending, we find more codes with a better minimum
distance than the current best known codes with the respective length and di-
mension. Our codes are related to the Goppa codes described by M. Loeloeian
and J. Conan in (1).

Background

Definition 1. Given a linear code C with length n, let Aw denote the number
of codewords whose weight equals w. Then, the vector [A0, A1, ..., An] is called
the weight enumerator of C. The weight enumerator polynomial of C is defined
by

W (C;x, y) =
n∑

w=0
Awx

wyn−w.

The lowest positive weight w such that Aw 6= 0 is the minimum distance of the
code.

Definition 2. Let p be a prime and let q = pm. Let L = {α1, α2, . . . , αn} be
a subset of Fq. Let g(x) be a polynomial such that g(αi) 6= 0, for αi ∈ L. The
p–ary Goppa code is defined as

C(L, g) :=

{
(c1, c2, . . . , cn) ∈ Fnp

∣∣∣∣ n∑
i=1

ci
x− αi

≡ 0 mod g(x)

}
.

Results

We have used the Coding Theory library of the SageMath programming lan-
guage to determine the parameters of our codes. In particular, we used SAGE’s
own Goppa Codes constructor and its method to compute the weight distribu-
tion of each Goppa code.

Construction of [239,21,103] code

We computed that the binary Goppa code C (L, (x17 + 1)6) is a [239, 21, 103] code. This linear code has a higher minimum
distance than the current best known [239, 21, 98] binary code. Its weight enumerator polynomial is given by:

x239 + 62244x136y103 + 81396x135y104 + 190519x128y111 + 217736x127y112

+ 496680x120y119 + 496680x119y120 + 217736x112y127 + 190519x111y128

+ 81396x104y135 + 62244x103y136 + y239.

By puncturing the [239, 21, 103] code 12 times we get best known codes with the following parameters:
[238, 21, 102], [237, 21, 101], [236, 21, 100], [235, 21, 99],
[234, 21, 98], [233, 21, 97], [232, 21, 96], [231, 21, 95],
[230, 21, 94], [229, 21, 93], [228, 21, 92], and [227, 21, 91].

Construction of [240,21,104] code:

The binary Goppa code C (L, (x16 + x)6) is a [240, 21, 104] code. This linear code has a higher minimum distance than the
current best known [240, 21, 98] binary code. Its weight enumerator polynomial is given by:

x240 + 143640x136y104 + 408255x128y112 + 993360x120y120

+ 408255x112y128 + 143640x104y136 + y240.

By shortening our [240, 21, 104] code we get a [239, 20, 104] code. By puncturing this one 7 times we get codes with the
following parameters:

[238, 20, 103], [237, 20, 102], [236, 20, 101], [235, 20, 100],
[234, 20, 99], [233, 20, 98], and [232, 20, 97].

Construction of [241,21,104] binary code:

The binary Goppa code C (L, (x15 + 1)6) is a [241, 21, 104] code. This linear code has a higher minimum distance than the
current best known [241, 21, 99] binary code. Its weight enumerator polynomial is given by:

x240y + 143640x136y105 + 408255x128y113 + 993360x120y121

+ 408255x112y129 + 143640x104y137 + y241.

By extending the [241, 21, 104] code to further lengths we get codes with following parameters:
[242, 21, 104], [243, 21, 104], [245, 21, 104],
[246, 21, 104], and [247, 21, 104].

Other Best Known Codes

We are very grateful to M. Grassl for pointing out the following two constructions
of new best known binary codes derived from the [240, 21, 104] binary Goppa
code.

With the technique from (3) it is actually possible to puncture the code at
suitably chosen positions to obtain best known binary codes of parameters
[208, 21, 81], [210, 21, 82], [213, 21, 84], [215, 21, 85], [218, 21, 87], [220, 21, 88],
[223, 21, 90], [226, 21, 92], [229, 21, 94], and [229, 21, 94], but the very positions
depend on the choice of the ordering of the elements of F256 when constructing
the Goppa code in first place.

Applying Construction X (4) to the [240, 21, 104] binary Goppa code, we can
also find a best known [249, 21, 106] binary code and a best known [254, 22, 106]
binary code.
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